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The modified regularized long wave (MRLW) equation is numerically solved using Four-
ier spectral collection method. The MRLW equation is discretized in space variable by the Fourier
spectral method and Leap-Frog method for time dependence. To validate the efficiency, accuracy
and simplicity of the used method, four cases study are solved. The single soliton wave motion,
interaction of two solitary waves, interaction of three solitary waves and a Maxwellian initial con-
dition pulse are studied. The L, and L, error norms are computed for the motion of single solitary

waves. To determine the conservation properties of the MRLW equation three invariants of motion
are evaluated for all test problems.
© 2016 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The regularized long wave (RLW) equation

M,—‘—Z/lx-‘rl/lu,\» — Mlxx :07 (11)

where p is a positive constant, is a nonlinear evolution equa-
tion, which was originally introduced by Peregrine (1966) in
describing the behavior of an undular bore and studied later
by Benjamin et al. (1972). This equation plays an important
role in describing physical phenomena in various disciplines,
such as the nonlinear transverse waves in shallow water, ion-
acoustic waves in plasma, magneto—hydrodynamics waves in
plasma, longitudinal dispersive waves in elastic rods, and pres-
sure waves in liquid’s gas bubbles. Many numerical methods
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for the RLW equation have been proposed, such as the finite
element method, Galerkin method, collocation methods with
quadratic B-splines, an explicit multistep method, finite differ-
ence methods and Fourier Leap-Frog method (Liu et al., 2013;
Saka and Dag, 2008; Soliman and Raslan, 2001; Mei and
Chen, 2012; Lin et al., 2007; Hassan and Saleh, 2010). The
RLW equation is a special case of the generalized regularized
long wave (GRLW) equation

U+ ty + ou'uy — iy, =0, (1.2)

where 6 and p are positive constants and p is a positive integer.
Various numerical techniques have been used for the solution
of the GRLW equation as (Mohammadi and Mokhtari, 2011;
Kaya, 2004; Roshan, 2012; Hammad and El-Azab, 2015;
Zeybek and Karakog, 2016). The modified regularized long
wave equation (MRLW) is a special form of GRLW
Eq. (1.2) and it plays a very important role at the modeling
of the nonlinear, dispersive media being modeled feature
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small-amplitude, long-wave length disturbances. The MRLW
equation was also solved using various numerical methods
such as, a Galerkin finite element method, a spline method,
the Adomian decomposition method, a collocation method
with cubic B-splines, finite difference scheme, meshless kernel
based method of lines, B-spline finite elements, mixed Galerkin
finite element methods, Tri-prong scheme, homotopy perturba-
tion method and He’s variational iteration method as Mei et al.
(2014), Raslan and EL-Danaf (2010), Raslan and Hassan
(2009), Khalifa et al. (2007, 2008a,b), Dereli (2012), Gardner
et al. (1997), Gao and Mei (2015), Hosseini et al. (2016),
Achouri and Omrani (2010), Labidi and Omrani (2011). Dis-
cretization using finite differences in time and spectral methods
in space has proved to be efficient in solving numerically non-
linear partial differential equations (PDE) describing wave
propagation. The combined schemes have been applied effi-
ciently to analyze unidirectional solitary wave propagation in
one dimension Korteweg de Vries (KdV) equation as
Fornberg (1996), Fornberg and Whitham (1987), Hassan and
Saleh (2013). The combination of spectral methods and finite
differences is applied to the Boussinesq type which admits bidi-
rectional wave propagation as Hassan (2010), Borluk and
Muslu (2015). The numerical solution for the modified equal
width wave (MEW) equation is presented using Fourier spec-
tral method by Hassan (2016). Different analytical and numer-
ical methods are used to solve differential equations as
Atangana and Cloot (2013), Atangana (2016), Semary and
Hassan (2016), El-Borai et al. (2017). In this study, the combi-
nation of Fourier spectral method in space and leap frog in time
is applied to the modified regularized long wave equation
(MRLW) equation. Consider the MRLW equation

U+ uy + 6u2ux — MUy = 07 (13)

where the subscripts x and ¢ denote differentiation, is consid-
ered with the boundary conditions u — 0 as x — +o0. In this
study, boundary conditions are chosen from

u(a,t) =0, u(b,0)=0, ¢>0. (1.4)
and the initial condition
u(x,0) =f(x), a<x<b (1.5)

where function f{x) will be chosen later. The numerical solu-
tion of the MRLW equation is investigated using the Fourier
Leap-Frog methods. The used method is validated by studying
the motion of a single solitary wave, development of interac-
tion of two positive solitary waves, development of three pos-
itive solitary waves interaction and a Maxwellian initial
condition pulse is then studied.

2. Analysis of the numerical scheme

A numerical method is developed for the periodic initial value
problem in which u is a prescribed function of x at + = 0 and
the solution is periodic in x outside a basic interval a < x < b.
Interval may be chosen large enough so the boundaries do not
affect the propagation of solitary waves. The Eq. (1.1) can be
written as

W, = —uty — 6uluy (2.6)

where

W= U — [l (2.7)

For ease of presentation the spatial period [a, b] is normalized
to [0, 2x] using the transformation x — 27n(x — a)/L, where
L=b—a. u(x,t) is transformed into Fourier space with
respect to x, and derivatives (or other operators) with respect
to x. This operation can be done with the Fast Fourier trans-
form (FFT). Applying the inverse Fourier transform
Ju— F'(ik)"F(u),n=1,2,.... Then, we need to discretize
the results equations. For any integer N >0 consider
xj=jAx =2 j=0,1,...,N — 1. The solution u(x, r) is trans-
formed into the discrete Fourier space as

ik, 1) = Flu) = li‘i e, NN (g
u(k,t) = u—N/ZOu‘,,e s 5 SKS5 .
And the inverse formula is
N/2—-1
u(x;, 1) = F ' (@) = a(k, 0™, 0<j<N-1 (29
k=-N/2

After all the previous mathematical operations to Egs. (2.7)
and (2.6), and then reducing the resulting equation to the
equations

w(x;, 1) = u(x;, 1) — u(2n/ L) F ' {—k*F(u)}, (2.10)
Lgf’ ) _ (an/ )P ik F)}
— 621/ L)1 (x;, 1) F~ ' {ik F(u)}. (2.11)

Letting u = [u(xy, 1), u(x1,1), ..., u(xy 1, 0)]".
The ordinary differential equation (2.11) can be written in
the vector form

w, = g(u) (2.12)

where g(u) defines the right hand side of (2.11). The Leap Frog
method (two-step scheme) is given as

Cow(x, t 4 An) —w(x,r— Ar)  owrh— !
e 241 BT,

is used to solve the resulting ordinary differential equation
(2.12) in time. Use the Leap-Frog scheme to advance in time
to obtain w(x, + Ar) = w(x,t — Ar) + 2Atg(u(x,1)).

Finally, we find the approximate solution using the inverse
Fourier transform (2.9). The Leap-Frog needs two levels of ini-
tial value; we begin with u(x,0) to get w(x,0) from (2.10), then

w(x,nAt) = F'((1 + pk* (2n/L)*) F(u(x, nAt)) (2.14)

(2.13)

w(x,0) = F ' ((1 + uk*(2r/ L)) F(u(x,0))). (2.15)

Then evaluate the second level of initial solution w(x, Ar) by
using a higher-order one-step method, for example, a fourth-
order Runge-Kutta method (RK4), then substitute w(x, A¢)
in (2.14) as

u(x, nAt) = F(Fw(x, A1) /(1 + pk*(2r/L)*))).

to obtain u(x, ¢). Thus, Eq. (2.12) become

(2.16)

w(x, 14+ At) =w(x,t— At)
—2At(14+6(2m/ LY (x,0))F~ {ik F{u(x,1)}} (2.17)

By substituting w(x,0) and u(x,Ar) in (2.17) to evaluate
w(x,2Ar) then substitute w(x,2Af7) in (2.16) to evaluate
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Table 1 Invariants and error norms for the single soliton with ¢ = 0.05, N = 2048, Ax = 0.1 and Az = 0.001.

t I b L L, x 103 L x 10}
0 3.217600191 0.465311294 0.007990311 0.0000000 0.0000000
2 3.217600191 0.465311294 0.007990311 0.1670832 0.0467942
4 3.217600191 0.465311294 0.007990311 0.2448388 0.0684808
6 3.217600191 0.465311294 0.007990311 0.2336465 0.0651000
8 3.217600191 0.465311294 0.007990311 0.3116369 0.0871898
10 3.217600191 0.465311294 0.007990311 0.4787285 0.1347674

u(x,2At), so we have w(x, Ar) and u(x, 2A¢), then substitute in
(2.17) to evaluate w(x, 3Ar), and evaluate u(x, 3A¢) from (2.16)
and so on, until we evaluate u(x, ) at time ¢ = nAt. We use
FFT routines in MATLAB (i.e., fft and ifft) to calculate Four-
ier transform and the inverse Fourier transform.

3. The validity of the numerical scheme

To check the efficiency and accuracy of the used numerical
method, many test problems will be considered: propagation
of single soliton and collision of two and three solitons at dif-

0.24r T T T T T T T T

o21F (@)

0.18

u(x,t)

A 00 75 50 -25 0 25 50 75 100

1.5

Error
o
T

Figure 1 (a) Motion of the single solitary wave at different
values of ¢, and (b) error distributions at 7 = 20 with ¢ = 0.05 and
N = 2048.

ferent time levels. Finally, we investigate the development of
the Maxwellian initial condition into solitary waves. Due to
the existence of the analytical solution in the first test problem,
the error between analytical and numerical solutions can be
calculated using L, and L., norms defined by

1/2
L — exct,n numn _ A exact,n numn 2
2 [ xZ}u 1 (3.18)

exct,n exact,n num,n
Ly = |lu — —u"""

numnH _ max,|u ;
The conservation properties of the MEW equation will be
examined by calculating the following three invariants, given
as Khalifa et al. (2008a) which respectively correspond to

mass, momentum, and energy.

11:/ udx, 12:/\ (0 + u(
L= / (u* — p(uy)?)dx

These invariants are used to check the conservative properties
of a numerical method, especially for problems without an
analytical solution and during collision of solitons. The inte-
grals are approximated by sums to obtain the numerically val-
ues of invariants in (3.19) at the finite domain [a, b] as follows:

I ~ Axiu(x,-, 1),
L~ AXZ (x),
L~ sz (x5, )

ux)z)dx,

(3.19)

)+ wus(x,1))7],

w(ue(x, 1)) (3.20)

3.1. Application 1: single solitary wave

The analytic solution of the MRLW equation is given by
Gardner et al. (1997):

u(x, 1) = vesech(p(x — (¢ + 1)t — xp)),

with boundary condition

(3.21)

u—0 as x — $oo, where
¢/u(c+1), xo and ¢ are real constants, and the initial

condition given as

u(x, 1) = /esech(p(x — xo)), (3.22)
The analytical values of the three invariants are
: 2¢  2upc 4cr 2upe
I, :_n\/z7 L :—C-F ﬂpc7 I; == _ N[JC. (3.23)
4 P 3 3p 3
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Table 2 Invariants and error norms for the single soliton with ¢ = 0.05 at different values of N at ¢ = 10 and comparison with
different methods.

N Ax At I b I Ly x 10° Lo, x 10°
256 1 0.001 3.206599616 0.463769956 0.007913129 3.209604 0.897132
512 1 0.001 3.212887075 0.464650699 0.007957254 1.648256 0.459176
1024 1 0.001 3.216030800 0.465091092 0.007979295 0.868371 0.241774
2048 0.1 0.001 3.217600191 0.465311294 0.007990311 0.478729 0.134767
4096 0.1 0.001 3.218388594 0.465421396 0.007995817 0.283909 0.080088
8192 0.1 0.001 3.218781559 0.465476447 0.007998570 0.186614 0.052793
Raslan and Hassan (2009 )

Quad. 0.2 0.2 3.215653 0.4655665 0.008004883 0.199288 0.481156
Cubic 0.2 0.2 3.215189 0.4655136 0.007999173 0.453811 0.625887
Table 3 Invariants and error norms for the single soliton with ¢ = 0.3, N = 2048, Ax = 0.1 and Az = 0.001.

t I L L L, x 10° Lo % 10°
0 3.580217732 1.344513519 0.153554106 0.0000000 0.0000000
5 3.580217732 1.344513519 0.153554106 0.6476041 0.2724080
10 3.580217732 1.344513519 0.153554106 1.6894359 0.7287846
15 3.580217732 1.344513519 0.153554106 2.3600926 1.0236940
20 3.580217732 1.344513519 0.153554106 2.6423750 1.1493109

To compare with some previous results, two problems are
studied for single solitary wave.

Problem 1. The parameters are chosen as xy = 40, ¢ = 0.05,
u=1, Ax=0.1, At=0.001 and N =2048 in time period
0 <1< 10. The analytical values for the invariants are
I, = 3.219174470, I, = 0.465531499 and 73 = 0.008001323.
Invariants and error norms for a single solitary wave at
different values of time are presented in Table 1. The motion of
single solitary waves is shown in Fig. 1. The program is run up
to time ¢ = 10 over the solution domain. Initially at z = 0 the
peak position of solitary wave was positioned at x = 40 with
amplitude 0.22360680 and at the end of time location of peak
position of the wave reached to x = 50.474646 with amplitude
0.22359503. It is clear from Fig. 1 that the single solitary wave
moved to the right with the preserved amplitude and shape. As
it is seen from Table 2, the error norms decrease (halved) when
N increases (doubled) and numerical invariants are closed to
the analytical values when N increases and its values remain
almost constant when compared with analytical values of
invariants. Calculated numerical results are very satisfactorily.
The comparison between the results obtained by the present
method with those in the other studies is also documented in
Table 2. The obtained results by the present method are
accurate compared with the other methods and also the used
method is simple.

Problem 2. In the second problem, the parameters are chosen
asxo=40,¢c =03, u=1,Ax =0.1, Ar=0.001 and N = 2048
in the time period 0 < 7 < 20. The analytical values for the
invariants are [I; = 3.581966678, I, = 1.345076492 and
I; = 0.153723028. Invariants and error norms for a single soli-
tary wave at different values of time are presented in Table 3.
The motion of single solitary waves is plotted in Fig. 2. The

program is run up to time ¢ = 20 over the solution domain. Ini-
tially at £ = 0 the peak position of solitary wave was positioned
at x = 40 with amplitude 0.54772256 and at the end of time
location of peak position of the wave reached to
x = 65982218 with amplitude 0.54753484. It is clear from
Fig. 2 that the single solitary wave moved to the right with
the preserved amplitude and shape. As it is seen from Table 4,
the results are accurate like that in problem 1.

3.2. Application 2: interaction of two solitary waves

Secondly, the interaction of two positive solitary waves is stud-
ied by using the initial condition given by the linear sum of two
separate solitary waves of various amplitudes,

2

u(x,0) = Z\/?,-sech(p,(x - Xxi)), (3.24)
i1

where p; = \/¢;/p(ci + 1), x; and ¢; (i = 1,2) are arbitrary con-

stants. The analytical values for the conservation laws in this
case have the following form:

TT+/C T/ C
L =ma e
Di D>
2 20, 2 2
A e e Y (3.25)
P )2 3 3
I 4ci  4e3 2peip; 2perp,
T 3, 3 3

In this case study, parameters are taken as ¢; =4, ¢; =1,
x1 =25, x, =55, N =2048, At =0.001 and Ax = 0.1. These
parameters provide solitary waves of magnitudes about 2
and 1 at =0 and their peaks are positioned at x = 25 and
x = 55. The initial function was placed with the larger wave
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Figure 2 (a) Motion of the single solitary wave at different
values of ¢, and (b) error distributions at 1 = 20 with ¢ = 0.3 and
N = 2048.

to the left of the smaller one as seen in the Fig. 3a. Both waves
move to the right with velocities dependent upon their magni-
tudes. According to Fig. 3, the larger wave catches up with the
smaller wave at about 1 = 9, the overlapping process continues
until 7 = 12, then two solitary waves emerge from the interac-
tion and resume their former shapes and amplitudes. At
t =20, the magnitude of the smaller wave is 0.996049 on
reaching position x =92.045, and of the larger wave
1.999735 having the position x = 127.662, so that the

2 2f
t=0
18 1.8
1s (2) o
14 14k
12 12
s =)
E z
08 Y
06 06|
04 04f
02 02
0
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Figure 3  Interaction of two solitary waves at different .

difference in amplitudes is 0.003951 for the smaller wave and
0.000265 for the larger wave. The analytic invariants
are I} = 11.467697669, I, =14.629242732 and L =
22.880466146. Table 5 displays the values of the invariants
obtained by the present method. It is observed that the
obtained values of the invariants remain almost constant
during the computer run and close to analytic values.

3.3. Application 3: interaction of three solitary waves

In this section, the interaction of three solitary waves is studied
with the initial conditions given by a linear sum of three sepa-
rate solitary waves of various amplitudes:

Table 4 Invariants and error norms for the single soliton with ¢ = 0.3 at different values of N at ¢ = 10 and comparison with different
methods.
N Ax At I L Ve L, x 10° Lo % 10°
256 1 0.001 3.567974713 1.340574276 0.152370272 21.103660 8.943814
512 1 0.001 3.574970715 1.342824656 0.153046586 10.552528 4.374456
1024 1 0.001 3.578468719 1.343950177 0.153384534 5.272343 2.198671
2048 0.1 0.001 3.580217732 1.344513519 0.153554106 2.642375 1.149311
4096 0.1 0.001 3.581092236 1.344794977 0.153638566 1.321486 0.574767
8192 0.1 0.001 3.581529488 1.344935710 0.153680791 0.660977 0.287463
Khalifa et al. (2008b)

0.2 0.025 3.58197 1.34508 0.153723 0.606885 0.296650
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3

u(x,0) = Z\/?,-sech(p,(x —x1)), (3.26)

i=1

where p;, = v/c;/u(c;+ 1), x; and ¢; (i=1,2,3) are arbitrary
constant. The analytical values for the conservation laws in
this case have the following form:

T\ /C T/ C T/ C
PRV

)

P1 P Ps
2¢ 2¢ 2¢ 2uc 2Ucp,  2uc
L="1 422,58 Hep, HCrpy | 210 3P37 (3.27)
D1 D> D3 3 3 3
_ 4t 4a 4G 2uap, 2uepy  2pespy
T3 3p, 3y 3 3 3

In this case, parameters are chosen as ¢; =4, ¢; = 1, ¢c; = 0.25,
x1 =15, x, =45, x3=60, N=2048, Ar=0.001 and
Ax = £ =260/2048. Solitary wave having the largest ampli-
tude is located to the left of the smaller ones. As is well known,
solitary waves with larger amplitudes have a greater velocity
than those with smaller amplitudes. Consequently, as time

goes on the larger two solitary waves catch up with the smaller

Table 5 Invariants for interaction of two solitary waves at
different times.

t I, I I;

0 11.462098207 14.624889848 22.866503875
2 11.462098207 14.624770155 22.866030604
4 11.462098207 14.624770137 22.866030613
6 11.462098207 14.624773601 22.866044720
8 11.462098207 14.624760431 22.866010568
10 11.462098207 14.624759478 22.866005516
12 11.462098207 14.624770339 22.866030712
14 11.462098207 14.624770321 22.866030942
16 11.462098207 14.624770256 22.866030937
18 11.462098207 14.624770230 22.866030930
20 11.462098207 14.624770217 22.866030928

Table 6 Invariants for interaction of three solitary waves at
different times.

one, the overlapping process of the three solitary waves contin- ! i L b
ues while the larger solitary waves have overtaken the smaller y e PR 1985000, SIEED 22U
ones. Plot of the three solitary waves is depicted at various > 14.972784239 15832499932 22993603647
.. . . 10 14.972784239 15.832470138 22.993546007
times in Fig. 4. At t = 45, the amplitudes of the smaller waves 15 14.972784239 15.830498462 2993602081
are 0.481476 at the point x = 108.598 and 1.014965 at the 20 14.972784239 15.832499481 22.993602500
point x = 136.922, whereas the amplitude of the larger one is 25 14.972784239 15.832499798 22.993602613
30 14.972784239 15.832499841 22.993602629
35 14.972784239 15.832499844 22.993602632
2 B 40 14.972784239 15.832499845 22.993602648
18 t=0 18 t=15 45 14.972784239 15.832500050 22.993603470
e (a) 16 (d)
14 14
08 ) Table 7 Invariants for Maxwellian initial condition at differ-
o Zj ent values of p.
02 o2 t % I, b 4]
0 50 o S0 200250 0 50 w0 o 0 0.1 1.771588395 1.378094808 0.760401557
3 1.771588395 1.378097446 0.760398361
. g 6 1.771588395 1.378097446 0.760398344
; =5 18 t=20 9 1.771588395 1.378097416 0.760398351
6 (b) 16 () 12 1.771588395 1.378097415 0.760398352
14 14 15 1.771588395 1.378097455 0.760398333
2 g™ Khalifa et al. (2008b)
£ 5! 15 1.77247 137764 0.762126
08 08 0 0.04 1.771588395 1.302859224 0.835637141
o4 Z: 3 1.771588395 1.302883963 0.835651071
- . 6 1.771588395 1302883968  0.835651065
0 50 100 150 200 250 0 50 100 . 150 200 250 9 1.771588395 1.302883951 0.835651074
! 12 1.771588395 1.302883952 0.835651071
. 15 1.771588395 1.302883953 0.835651071
1; =10 1; (=45 Khalifa et al. (2008b)
16 © 1o ) 15 1.77254 1.30074 0.840643
:: :: 0 0.015 1.771588395 1.271511064 0.866985301
% ] g 3 1.771588395 1.271600511 0.867067547
o8 S 0e 6 1.771588395 1.271600614 0.867067541
08 06 9 1.771588395 1.271600621 0.867067539
o4 04 12 1.771588395 1.271600623 0.867067541
° o 15 1.771588395 1271600623  0.867067541
0 50 100 150 200 250 0 50 100 150 200 250 Khalifa et al. (2008b)
’ i 15 1.77303 1.26706 0.885111
Figure 4 Interaction of three solitary waves at different .
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1.997794 at the point x = 244.377, so that the difference in
amplitudes is 0.018524, 0.014965 and 0.002206. The analytic
invariants are [I; = 14.98010504, I, = 15.82181232 and
I, = 22.99226955. Table 6 displays the values of the invariants

0.8 i

0.6 1

u(x, 15)

0.4f .

0.2 k

20 40 60 80 100

1.2) u=0.04 1

Al (b) ,

u(x, 15)

04F k

20 40 60 80 100

14 u=0.015 :

u(x, 15)

0.6 i

20 40 60 80 100
X

Figure 5
and 7 = 15.

Maxwellian initial condition with different values u

obtained by the present method. It is observed that the
obtained values of the invariants remain almost constant dur-
ing the computer run and close to analytic values.

3.4. Application 4: the Maxwellian initial condition

Finally, the evolution of solitary waves is studied by using the
Maxwellian initial condition

u(x,0) = e~ (x40 (3.28)
with boundary condition
u(0,1) = u(100,7) = 0. (3.29)

As it is known, Maxwellian initial condition the behavior of
the solution depends on the values of p. We choose various
values of g as u=0.1, u=0.04 and = 0.015.

Calculated numerical invariants at different values of ¢ for
different values of u are shown in Table 7 and it is seen that cal-
culated invariant values are satisfactorily constant and close to
the other solutions like Khalifa et al. (2008b) of invariants. The
development of the Maxwellian initial condition is shown in
Fig. 5 with different values of y, respectively. The smaller y there
is, the more the number of solitary waves will form. For u = 0.1,
it is observed that a single solitary wave is occurred, however, as
the value of p is reduced then the number of wave increases.

4. Conclusion

The combination between Fourier spectral method and leap
frog method has been applied to obtain the numerical solution
of the modified regularized long wave equation (MRLW). The
accuracy, efficiency and the simplicity of the present scheme
were verified by four numerical applications: the motion of a
single solitary wave and its accuracy was shown by calculating
error norms L, and L, the interaction of two solitary waves,
the interaction of three solitary waves, and development of the
Maxwellian initial condition pulse is then studied at different
values of u. This scheme numerically satisfies the conservation
laws of mass, momentum, and energy. The obtained results
show that the present method is a remarkably successful
numerical method and efficiently applied to MRLW and other
types of non-linear partial differential problems.
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